DATA STRUCTURES & ALGORITHMS
Tutorial 1 Solution

COMPUTATIONAL COMPLEXITY

Question 1.

Reorder the following efficiencies from the smallest to the largest:

a. \(n + n^2 + n^5 \)
b. 20,000
c. \(4^n \)
d. \(n^4 \)
e. \(n! \)
f. \(n\log_2(n) \)

Solution:

Efficiency: a measure of amount of time for an algorithm to execute (Time Efficiency) or a measure of amount of memory needed for an algorithm to execute (Space Efficiency).

\[20,000 < n\log_2(n) < n^4 < n + n^2 + n^5 < 4^n < n! \]

Question 2.

Decide whether these statements are True or False.

a. If \(O(f(n)) = O(g(n)) \) then \(f(n) = g(n) \)
b. If \(f(n) = O(g(n)) \) and \(g(n) = O(f(n)) \) then \(f(n) = g(n) \)

Solution:

a. False.
Ex: \(f(n) = 2n, g(n) = 3n \)
b. False
Ex: \(f(n) = n, g(n) = n + 1 \).

Explanation:

First, we review the definition of Big-O:

\(f(n) = O(g(n)) \iff \text{there are constants } C \in \mathbb{R}^+ \text{ and } k \in \mathbb{N} \text{ such that } 0 \leq f(n) \leq Cg(n) \text{ where } n > k \)

Here, we have: \(f(n) \leq 1 \times g(n) \) where \(n > 1 \). Hence, \(f(n) = O(g(n)) \).
And, we also have: \(g(n) \leq 2 \times f(n) \) where \(n > 1 \). Hence, \(g(n) = O(f(n)) \).
But \(f(n) \neq g(n) \).

Question 3.

Determine the big-O notation for the following:

- a. \(n^2 + n^5 \)
- b. \(100n + 20n^{2/3} + 15n^{5/7} \)
- c. \(9\log_2(n) + 6n \)
- d. \(n^{100} + 2^n \)
- e. \(n! + 2^n \)
- f. \(n\log_2(n) + 5n \)

Solution:

- a. \(O(n^5) \)
- b. \(O(n) \)
- c. \(O(n) \)
- d. \(O(2^n) \)
- e. \(O(n!) \)
- f. \(O(n\log_2(n)) \)

Question 4.

Calculate the run-time efficiency of the following program segment:

```
1   i = n
2   loop (i >= n/2)
   1   j = n - i
   2   loop (j < i)
      1   print(i, j)
      2   j = j + 1
3   end loop
4   i = i - 1
3   end loop
```

Solution:

Assume that \(n/2 = \lfloor n/2 \rfloor \) in the given program segment.

- If \(n \) is **even**, the run-time efficiency is
 \[n + (n - 2) + (n - 4) + \ldots + 2 = n(n + 2)/4 = O(n^2) \]
- If \(n \) is **odd**, the run-time efficiency is
 \[n + (n - 2) + (n - 4) + \ldots + 1 = (n + 1)^2/4 = O(n^2) \]

Or generally, the run-time efficiency of the given program segment is \(O(n^2) \).

Question 5.
Estimating the time complexity of the following program segment:

```plaintext
i = 0
loop (i < N)
    j = i
    loop (j < N)
        k = 0
        loop (k < M)
            x = 0
            loop (x < N)
                print(i, j, k)
                x = x + 3
            end loop
        end loop
    k = k + 1
end loop
j = j + 1
end loop
i = i + 1
```

Solution:
The iteration of variable i is executed N times. For each loop of variable i, the iteration of variable j is executed N, $N-1$, $N-2$, ..., 1 times. For each loop of variable j, the first iteration of variable k is executed M times. For each loop of variable k, the iteration of variable x is executed $[(N+2)/3]$ times; the second iteration of variable k is executed $2M$ times. Therefore, the run-time efficiency is

\[
N \times (M \cdot [(N+2)/3] + 2M) + (N-1) \times (M \cdot [(N+2)/3] + 2M) + \ldots + 1 \times (M \cdot [(N+2)/3] + 2M)
\]

\[
= N \cdot (N+1) \cdot (M \cdot [(N+2)/3] + 2M) / 2
\]

\[
= O(N^3 M)
\]

Question 6.

If the algorithm `doIt` has an efficiency factor of $7n$, calculate the run time efficiency of the following program segment:

```plaintext
i = 1
loop (i <= n)
    j = 1
    loop (j < n)
        k = 1
```
Solution:
There are 3 nested loops, the iteration of variable i is executed n times, j is executed $n-1$ times, k is executed n times. Therefore, the run-time efficiency is $n(n-1)n(7n) = O(n^4)$.

Question 7.

Write a recurrence equation for the running time $T(n)$ of $f(n)$, and solve that recurrence.

Algorithm f (val n <integer>)

Pre n must be greater than 0
Return integer value of f corresponding to n

1 if ($n = 1$)
 1 return 1
2 else
 1 return $f(n - 1) + f(n - 1)$

End f

Solution:
$T(1) = 1$
$T(n) = 1 + 2*T(n-1) = 1 + 2*(1 + 2*T(n-2)) = …$
$= 1 + 2 + 2^2 + … + 2^{n-1} = 2^n - 1 = O(2^n)$

Question 8.

Write a recurrence equation for the running time $T(n)$ of $g(n)$, and solve that recurrence.

Algorithm g (val n <integer>)

Pre n must be greater than 0
Return integer value of g corresponding to n

1 if ($n = 1$)
 1 return 1
2 else
 1 return $2*g(n - 1)$

End g
Solution:
T(1) = 1
T(n) = 1 + T(n-1) = 1 + 1 + T(n-2) = 1 + 1 + … + 1 + 1 + T(1) = n = O(n)

Question 9.

Given that the efficiency of an algorithm is $5n\log_2(n)$, if a step in this algorithm takes 1 nanosecond (10^{-9}), how long does it take the algorithm to process an input of size 7000?

Solution:
$5 \times 7000 \times \log_2(7000) \times 10^{-9} = 4.4706 \times 10^4s$

-- End --